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Abstract 

This paper analyzes the geometry of the visual motion estimation problem in rela- 
tion to  transformations of the input (images) that stabilize particular output functions 
such as the motion of a point, a line and a plane in the image. By casting the problem 
within the popular "epipolar geometry", we provide a common framework for includ- 
ing constraints such as point, line of plane fixation by just considering "slices" of the 
parameter manifold. The models we provide can be used for estimating motion from a 
batch using the preferred optimization techniques, or for defining dynamic filters that 
estimate motion from a causal sequence. We discuss methods for performing the neces- 
sary compensation by either controlling the support of the camera or by pre-processing 
the images. The compensation algorithms may be used also for recursively fitting a 
plane in 3-D both from point-features or directly from brightness. Conversely, they 
may be used for estimating motion relative to the plane independent of its parameters. 
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ONR grant N00014-93-1-0990. This work is registered as CDS technical report n. CIT-CDS 95-009, March 
1995. 



1 Introduction 

Suppose you are looking at a scene through a moving camera. The problem of visual motion 
and structure estimation deals with reconstructing both the relative motion between the 
scene and the camera, and the "structure" of the scene. The strategies for solving the 
problem depend on how we represent the "structure" of the scene and its motion relative to 
the viewer. 

Suppose that our scene is described by a number N of point-features in 3-D space, with 
coordinates Xi b'i = 1 . .  . N relative to some reference frame centered in the optical center 
of the camera, which move rigidly between one time-instant and another, with some relative 
translation T and relative orientation R. Suppose we are able to measure the perspective 
projection of each point-feature onto the 2-D image plane, through the projective coordinates 
xi. We also assume we are able to assess which feature corresponds to which across different 
views (the correspondence problem; see [l] for a number of techniques for addressing this 
problem). 

1.1 Mot ion and structure estimation as an opt imizat ion problem 

Once the geometric constraints involved in the problem (namely the rigidity constraint and 
the point-wise representation of structure) and the measurement model (perspective projec- 
tion) have been formalized, one can set up an optimization problem in order to estimate the 
3N $. 6 M  unknown parameters (3 space coordinates for each feature-point and 6 components 
of motion across M time instants), from the 2 N M  image projections of the N points at each 
of the M images. 

There are two aspects which are tightly related in formulating the optimization task: 
the model  being used, and the es t imat ion  techniques employed. A variety of models have 
been proposed for estimating structure and motion from images, which were then employed 
in batch optimization techniques (closed-form from two or more views or iterative) or in 
recursive estimation methods. 

A simple counting of the dimensions involved will soon convince the reader that, regard- 
less the estimation method employed, the huge dimensionality of the problem and the highly 
nonlinear nature of the parameter space make the optimization so complicate that the issue 
of an appropriate modeling becomes crucial. 

A typical number of feature-points visible on each frame of a realistic scene is, say, 
N = 100. If we consider a sequence of M = 30 images, corresponding to one second of video, 
we have 480 unknown parameters, with 6000 available measurements. The unknowns live 
on a parameter space that is diffeomorphic to 

where SE(3) is the Lie-group of Euclidean motions in R3 [9]. We are going to be able 
to recover only 479 parameters, since there is an overall scaling ambiguity that affects the 
depth of each point and the norm of the direction of translation [8]. Even if we consider the 
camera as moving with constant  velocity during the 1 second video sequence, we still have 
305 parameters to estimate. 



1.2 Decoupling as a modeling strategy 

When facing a high-dimensional optimization problem it is important to understand the 
geometry of the parameter space in order to see whether there are "slices" of it where 
the parameters evolve independently in the cost objective. Suppose for instance that our 
optimization task can be written in the form 

i,$ = arg min f(x ,  y)  
xEX,yEY 

and suppose that we can identify a subspace of the space X, of the form 

such that, when i j  solves the above optimization problem, the corresponding 2 is given 
by 2 = g($). Then we can decompose the original optimization problem (locally) into a 
smaller-dimensional one of the form 

whose solution can be used for computing 

This procedure responds to the need of decomposing a high-dimensional optimization task 
into the solution of a number of smaller, simpler and better constrained problems by exploit- 
ing the geometric structure of the parameter space. 

In the case of structure and motion estimation, the work of Longuet-Higgins [8] follows 
this direction, by decoupling the structure parameters Xi from the motion parameters T ,  R, 
which are encoded as elements of an 8-dimensional space, called the essential manifold 1131. 
Heeger and Jepson [5] further decouple the translational velocity from the rotational velocity 
in the continuous-time approximation. Therefore, the algorithms of Longuet-Higgins and 
Heeger and Jepson, applied to the original task of estimating structure and motion, formulate 
a constraint involving only 8M and 2M unknown parameters respectively, from which all 
the other unknowns can be recovered a-posteriori. 

The models described by Longuet-Higgins and Heeger-Jepson are essentially static, in 
the sense that the estimates of motion at the frame m depend only upon measurements of 
the neighboring frames m and m - 1. The coherency of the structure and motion across 
multiple frames may be exploited; in [13], the constraints formulated by Longuet-Higgins 
and Heeger and Jepson are viewer as implicit dynamical systems of some particular class 
(Exterior Differential Systems), and a recursive estimation scheme is proposed for integrat- 
ing information over time in a causal fashion (the estimates at the frame m depend upon 
measurements from the images 1 . . . m). 

1.3 Compensation of image-motion 

Motivated by the mechanics of the oculomotory system in most mammals, a number of 
studies have suggested that the task of estimating motion is made easier if some particular 
point on the image-plane is being "fixated" [4, 11, 151. 



The claim is that fixation, intended as a "pre-processing" stage, facilitates motion anal- 
ysis by reducing the number of residual degrees of freedom. The pre-processing can be 
accomplished both "mechanically" by rotating the eye, or "algorithmically" by shifting the 
coordinate system of the image-plane. 

In a completely different context, alternative representation of the scene have been pro- 
posed, which refer the structure to some plane in the scene. After "warping" the image so 
as to stabilize the image of the plane, the residual image-motion is simpler to analyze and 
is related only to a small number of free parameters, while the others have been "factored 
out" by the warping procedure [12, 101. 

Both operations, fixation and warping, can be viewer as a pre-processing stage in which 
we try to compensate for the image motion of a point or a plane. We can imagine another 
situation in between these two extrema, which consists in compensating for the motion of a 
point and the orientation of a line in the image plane. 

Alternatively we could view these pre-processing operations as a closed control loop that 
stabilizes the image motion of a point, a point and a line, or a plane. 

1.4 Compensat ion for decoupling: geometric stratification 

In this paper we show that the concepts of image compensation (or stabilization) and de- 
coupling of motion and structure parameters are closely related. 

We start off by recalling the setup of epipolar geometry [8] in order to decouple structure 
from motion, without any compensation. Motion estimation is qualified as an optimization 
task with the parameters on the essential manifold, which can be solved in closed-form from 
two views [8, 17, 31, iteratively from two views [7] or recursively from an image sequence [13]. 

Then we explore how the setup of epipolar geometry is modified under the assumption 
that the motion of a point, a line or a plane has been compensated. We will see that such 
compensations allow us to identify "slices" of the essential manifold and therefore define 
smaller, simpler and better-constrained models for estimating motion. 

In the general case, the parameters evolve on the 5-dimensional essential manifold; once 
we compensate for the motion of a point, a line or a plane, we reduce the problem to a 4,3 
and 2-dimensional submanifold respectively. The table below summarizes this geometric 
stratification. Note that, while fixation of a point, or a point and a line, can be achieved 
both mechanically and algorithmically, there is no physical 3-D relative motion between the 
camera and the scene that stabilizes the image-motion of a plane. Therefore, this may only 
be accomplished in software. 



Geometric stratification of the problem of estimating motion under the 
compensation of the image-motion of a point, a point and a line, and a plane. 

1.5 Relation to previous work 

Stabilized 
feature 

none 
point 

point +line 

plane 

This paper analyzes the geometry of the motion estimation problem in relation to transfor- 
mations of the input images that stabilize particular output functions such as the motion of a 
point, a line and a plane in the image. As a side-effect, it outlines a unified modeling frame- 
work for estimating rigid 3-D motion under compensation of image-motion. The geometric 
framework is the popular "epipolar geometry", which has been object of extensive study 
over the past decade (see [3] for a review). Diverse studies on motion fixation [4, 11, 151 and 
structure representation [12, 101 are cast in the same framework, which allows us to compare 
the estimates of motion under the different fixation assumptions. Another side-effect is the 
derivation of a discrete-time equivalent of the model proposed by Heeger and Jepson [5] 
under the inst ant aneous approximation. 

Most of the paper is concerned with modeling. However, for each model proposed, we 
suggest a formulation of a dynamic filter that recursively estimates the parameters of the 
model. These filters are based upon the general techniques presented in [13]. 

The paper also describes how to actually design the image compensations which the 
models are based upon. These can be derived both from point-features, or directly from 
brightness, and therefore fall in the category of the so-called "direct methods" [6]. The 
models for image warping from brightness can be easily extended for estimating the motion 
of a plane or the direction of translation from point-features or directly from the image 
brightness. 

1.6 Organization of the paper 

Compensating 
3-D motion 

none 
2-D camera 
rotation 
rotation about 
optical center 
no feasible 3-D 
rigid motion 

Section 2 serves to establish the notation and introduce the well-known setup of epipolar 
geometry. The coplanarity constraint introduced by Longuet-Higgins [8] is derived, and 
possible estimation techniques that exploit it are described, which include closed-form and 
iterative solutions from two views, or recursive multi-frame estimation. The parameters of 
any estimation scheme based upon the epipolar constraint evolve in the so-called "essential 

Corresponding 
image 
deformation 

none 
image center 
displacement 
image center 
shift + rotation 
quadratic 
warping 

Residual 
DOFs 

5 
4 

3 

2 

State-space 
manifold 

E Essential mfd 
S4 Sylvester mfd 

S3 3-dimensional 
Sylvester mfd 
4 3 )  skew- 
symmetric unit- 
norm 3-matrices 



manifold", which is a differentiable (smooth) manifold whose structure is briefly described 
in section 2.2. 

Section 3 studies how the setup of epipolar geometry is modified when one point is 
being fixated on the image plane. We show that the fixation constraint defines a simple 
submanifold of the essential manifold, and therefore all the techniques used for estimating 
a general motion can be particularized to this case by just restricting the parameter to the 
corresponding "slice" of the essential manifold. As far as actually stabilizing the motion of 
a point on the image-plane, we refer the reader to the appropriate literature. 

In section 4 we further constrain the motion by assuming that the position of a point 
and the orientation of a line are fixed in the image plane. 

In section 5 we study the case when the image has been warped such as the motion of a 
plane in the scene has been compensated. We describe the so-called "plane-plus-parallax" 
representation [12, 101, and unreveal the geometric structure that induces on the essential 
manifold. In section 5.4 we discuss methods for actually performing the warping, both from 
point-features and directly from image brightness. 

As a side-effect, we introduce a model for recursively fitting a plane in the scene both 
from feature-point correspondence and from brightness (section 5.5), as well as a model for 
estimating motion relative to the plane. 

2 Epipolar geometry 

We call X = [ X Y Z I T  E IR3 the coordinates of a generic point P with respect to an 
orthonormal reference frame centered in the center of projection, with Z along the optical 
axis and X, Y parallel to the image plane and arranged as to form a right-handed frame. 
Since we are interested in the displacement relative to the moving frame (ego-motion), we 
can write the rigid motion of the point of coordinates Xi between time t and t + 1 as 

The rnatrix R E SO(3)  is an orthonormal rotation matrix that describes the change of 
orientation between the viewer's reference at time t and that at time t + 1 relative to the 
object. T E I R ~  describes the translation of the origin of the viewer's reference frame. The 
3 x 3 rotation matrix R comprises 3 degrees of freedom, which we represent as the three- 
dimensional vector of exponential coordinates 0, defined such that R = en" [9]. 

What we are able to measure is the perspective projection n of the point features 
onto the image plane, which for simplicity we represent as the real projective plane. The 
projection map n associates to each p # 0 its projective coordinates as an element of RP2: 

We usually measure x up to some error n, which is well modeled as a white, zero-mean and 
normally distributed process with covariance R,: 

y = x + n  n E N(0, R,). 



2.1 Coplanarity constraint 

Figure 1: Coplanarity constraint: the coordinates of each point in the reference of  the 
viewer at time t ,  the coordinates of the same point at time t+l and the translation vector 
are coplanar. 

The well-known coplanarity constraint (or "epipolar constraint", or "essential constraint") 
of Longuet-Higgins [8] imposes that the vectors T(t) ,  Xi(t + 1) and Xyt )  be coplanar for all 
t and for all points Pi (figure 1). The triple product of the above vectors is therefore zero. 
In order to write the triple product in a common coordinate system, we multiply both sides 
of (6) by axi (t + l)T (TA), where a E IR - {0), ending up with 

which we will write as 
~ ' ( t  + l ) ~ ( t ) x ' ( t )  = 0 

with 
Q(t) - Q(R(t), T(t)) = (T(t)) A R(t). 

We will use the notation Q(t) when emphasizing the time-dependence, while we will use 
Q(R7 T)  when stressing the dependence of Q from the 3 rotation parameters contained in R 
and from the normalized translation T. 

Since the coordinates of each point Xi(t) and their projective coordinates xi(t) span the 
same direction in Et3, the constraint (9) holds for xi in place of Xi (just divide eq. (9) by 
X4(t + l)Xi(t)):  

x y t  + 1)&(t)xi(t) = 0 vt vi. (11) 



2.2 The essential manifold 

For a generic skew-symmetric matrix S = TA E so(3) and a rotation matrix R E S0(3) ,  the 
matrix Q = S R  belongs to the so-called "essential manifold" 

E {SR S E so(3), R E S0(3)),  (12) 

whose structure of an algebraic variety has been object of massive study over the past 
decade (see [3] for a review). Only very recently, however, it has been realized that the 
essential manifold is indeed a differentiable (smooth) manifold, since it can be characterized 
as the tangent bundle to the rotation group TSO(3) [13], which is a six-dimensional smooth 
manifold. It is possible to characterize the topological properties of the essential manifold 
by defining a local coordinate chart, in the lines of [13]. 

Figure 2: The essential manifold as the tangent bundle of the rotation group 

2.3 Motion estimation from the epipolar constraint 

The coplanarity constraint has been used for over a decade in order to estimate rigid motion 
from images. The schemes available can be roughly classified as two-frames, closed-form 
solutions, two-frames iterative solutions or recursive, multi-frame algorithms. 

Closed-form solutions consist of first estimating the parameters of a generic matrix Q 
from a number N 2 8 of epipolar constraints (ll), and then unfolding the parameters T and 
R from the estimated Q,  in the lines of [8, 16, 31 and many other modifications of the basic 
scheme of Longuet-Higgins [8]. 

These schemes are quasi-linear, in the sense that both estimating Q from the epipolar 
constraints and unfolding the motion parameters from it can be accomplished using essen- 
tially linear techniques. However, the procedure is not optimal, because the structure of 



the matrix Q is not enforced in the estimation stage, but rather "a posteriori", so that the 
estimate of Q is not guaranteed to belong to the essential matrix. In order to overcome 
this problem, one could substitute the parameters T and 0, where R are the exponential 
coordinates of R, into the epipolar constraint, and then solve iteratively for this parameter 
for a number of constraints, in the lines of [7]. This procedure is more robust than the 
closed-form, but unpredictable due to the sensitivity of the iterative descent procedure in 
the presence of foldings of the error surface or local minima. 

Another possibility consists in viewing the epipolar constraint (11) as an implicit dy-  
namical system with parameters on the essential manifold. The so-called "Essential filter" 
described in [13] provides a principled way of identifying the motion parameters recursively 
from the dynamical model 

3 Compensating for a point: motion from fixation 

Suppose now that some device provides us with a sequence of images where the projection 
of a given point on the image-plane remains fixed. This is the case of a viewer moving while 
fixating some object in the scene. In section 3.1 we show how the setup of epipolar geometry 
is modified under the fixation assumption. In the following section 3.3 we describe how it 
is possible to design both an "hardware" device of a simple "software" device that controls 
fixation of a point. 

3.1 Motion from fixation 

Since the projection of the fixation point is still in the image plane, the object (scene) is 
free only to rotate about this point, and to translate along the fixation line. Therefore there 
are overall 4 degrees of freedom left from the fixation loop. These four degrees of freedom 
are encoded into the rotation matrix R = e"", and in the relative translation along the 
fixation axis v E IR. It is easy to see that the representation presented in the previous 
section generalizes easily once we represent the translation T as 

and 

is the ratio between the distance of the fixation point at time t + I and the same distance 
at time t .  



3.2 Modification induced on the essential manifold 

The coplanarity constraint (1 1) also holds in the case of fixation, once we have substituted the 
appropriate expression for T. Since there are now fewer degrees of freedom (4, out of 5 that 
were present in the general case), the parameters IR and v will now lie on a four-dimensional 
subspace of the essential manifold. Indeed, it can be shown 1141 that the essential matrices 
under the fixation constraint are all and only the 3 x 3 essential matrices that satisfy the 
following Sylvester's equation 

Q(R, v) = R S ~  + vSR (16) 
where 

0 -a 0 
0 0 1  (17) 

0 0 0  

and a is the arbitrary scaling factor due to the homogeneous nature of the coplanarity 
constraint. We will call S4 the four-dimensional submanifold of the essential manifold which 
is defined by the above equation. The S4 manifold is locally diffeomorphic to R x SO(3) 
and hence to R4. 

Therefore, in order to estimate motion under the fixation constraint, it is sufficient to con- 
sider the epipolar constraint where now the parameters are constrained not on the essential 
manifold, but on the S4-manifold. 

where 
S4 = {Q E E I Q = R S ~  + vSR, R E S0(3) ,v  E IR,, S = [0 0 1 I T ~ ) .  (I9) 

In [14] we have presented both recursive multi-frame and batch motion estimation techniques 
based upon the fixation constraint. 

3.3 Fixation control 

Keeping a single feature point fixed on the image plane can be accomplished both by rotating 
the camera about the center of projection (or about any other point in space), or by shifting 
the center of the image-coordinates by a purely software operation. As far as the effects are 
concerned for motion estimation, the two methods are equivalent. A gaze-control technique 
based upon geodesic control on a sphere is described in [14] and based upon [2], while irnage- 
shift registration techniques are described, for instance, in [15]. 

4 Compensating for a point + a line: motion from 
planar fixat ion 

Suppose now that some external device is capable of not only keeping the fixation point still 
on the image plane, but also of maintaining one additional feature on a line passing through 
the fixation feature. In this section we explore how this constraint affects the epipolar 
framework (section 4.1) and how it is possible to achieve such a fixation (section 4.3). 



4.1 Motion from planar fixation 

Suppose that we maintain a point and a line passing through it fixed in the image plane. 
We are essentially in the same situation described in the previous section once we have 
"frozen" the degree of freedom corresponding to cyclorotation (rotation about the optical 
axis). Therefore there are overall 3 degrees of freedom. 

4.2 Modification induced on the essential manifold 

The essential matrices corresponding to motions that obey the point plus line fixation con- 
straint must lie on a three-dimensional submanifold of the submanifold S4 of the essential 
manifold E, since the point-fixation constraint described in the previous section is satisfied. 
The only modification that occurs is that now there is no translation about the 2- axis 
(cyclorotation). Therefore the parameter space becomes 

Therefore, under the point plus line fixation assumption, we can still use the standard 
estimation techniques based upon the epipolar constraint (closed-form, iterative or recursive) 
provided that we restrict the parameter manifold to the 3-dimensional submanifold of the 
essential manifold described by the above equations 

4.3 Line fixation control 

Fixating a line on the image plane can be easily achieved by fixating a point and then rotating 
the image until the other point comes to the desired line. This can be accomplished both 
by rotating the camera about the fixation axis, or by rotating the image about the optical 
center with a purely software operation. 

5 Compensating for a plane: plane plus parallax 

We now proceed in our stratification by assuming that we are able to "compensate" the 
image sequence in such a way that the points that lie on an "average plane" of the scene 
(or on any other arbitrary plane) remain fixed in the image plane. In this case there is 
no physical motion of the camera that achieves this compensation (besides the trivial still 
configuration). Therefore we need to "deform" the images of the sequence in order to account 
for the motion of the plane. In section 5.4 we will show how it is possible to achieve such a 
compensation purely from image brightness or from point-correspondences, without direct 
knowledge of the motion of the camera or of the parametrization of the plane. In the next 
section 5.1, instead, we will see how the epipolar geometry is modified by this constraint. 
We will show, as it has already been noticed [12, 101, that, after the motion of the plane has 
been compensated, the residual motion depends only upon translation, while rotation has 



been "factored out". Therefore, only the two parameters of the direction of translation are 
left in the epipolar constraint. The subspace of the essential matrix that corresponds to the 
plane-fixation has an appealing geometric description and the factorization of the rotational 
component of motion from the translational part is complete. 

5.1 Plane-plus-parallax representation 

Figure 3: Plane plus parallax representation 

Suppose that we are given a plane in the image which does not pass through the center 
of projection, described by 

II = { X  E I R ~  I aTx = 1) (22) 

where a = [al a1 a3IT are the parameters describing the planar surface. This plane could be 
the least-square fit of the scene, or it could be any planar surface not intersecting the center 
of projection. Suppose at time t we observe some point P @ It, through its coordinates x(t). 
Now call Pn the point obtained by intersecting the plane with the vector x(t)  (see figure 3). 
Its projection clearly coincides with the one of P: 

Now suppose that the camera moves between time t and t + 1, and that the coordinates of 
each point xi(t + 1) is warped in such a way that the coordinates of the points lying on the 
plane II remain unchanged (we will see later on how to accomplish such a warping): 



Therefore 
x;;l(t + 1) = xn(t) = ~ ( t )  

in the coordinate frame of the viewer at time t + 1. The epipolar constraint imposes that 
xK(t + I), xw(t + 1) and T(t)  be coplanar (see figure 3). Note that these three vectors are 
all defined in the same reference frame, the one of the viewer at time t + 1. By writing the 
triple product as 

xw(t + I ) ~ ( T ( ~ )  A xg(t + 1)) = 0 (26) 

and remembering that xK(t + 1) = xn(t) = x(t) ,  we end up with the usual epipolar constraint 
( l l ) ,  where now the matrix Q = T A  is now just a skew-symmetric matrix depending upon 
translation 

xiw(t + l)Q(t)xi(t) = 0 
xi(t) + n; (t) 

The effect of rotation has been canceled out by the image warping. 

5.2 Modification induced on the essential manifold 

We have seen that the plane-fixation constraint corresponds to essential matrices which are 
of the form Q = TA. Due to the normalization constraint on T, we have only two degrees 
of freedom left, and rotation has been fully decoupled from translation. 

If we follow the interpretation of the essential manifold as the tangent bundle of the 
rotation group, presented in [13], we can give a simple geometric plot of the effect of the plane- 
fixation constraint on the essential manifold. In particular, each essential matrix Q = T A R 
is a tangent vector in the direction TA to the point R of the set of rotation matrices SO(3). 
The tangent plane to the origin (identity matrix) of the rotation group is just the set of skew- 
symmetric matrices so(3), which is the lie algebra corresponding to the lie group SO(3). Now 
the effect of the plane-fixation constraint is that of mapping an arbitrary tangent vector to 
SO(3) at an arbitrary point, onto a tangent vector to the origin by right-operation (see 
figure 2). 

Therefore, among all possible tangent vectors at all possible rotations (i.e. among all 
possible essential matrices), the ones that correspond to a plane-fixation situation are all 
and only the ones that are tangent to the origin (identity). 

5.3 Motion estimation under plane-compensation 

The plane-compensation has the effect of decoupling rotation from translation. Any motion 
estimation scheme based upon the epipolar constraint, with the parameters on so(3) - the 
space of 3 x 3 skew-symmetric matrices, estimates the two parameters corresponding to the 
direction of translation. Note that such schemes would be linear, for so(3) is isomorphic 
to IEt3 (i.e. there is a linear and bijective transformation between matrices S E so(3) and 
vectors [I' E IEt3, which is indeed S = TA). Rotation can be estimated separately from the 
parameters of the plane-compensation, as we will see in the next sections. 



5.4 Plane-cornpensat ion: quadratic warping 

In this section we formulate a differential constraint on the projection of points on the plane 
II. This constraint can be used for finding the transformation of the projective coordinates of 
points on the plane along time. The transformation can be inverted in order to compensate 
for the motion and maintain the points on the plane fixed in image coordinates. 

Consider the generic point Xn E II. At a generic time instant, due to the motion of the 
camera with translational velocity V and rotational velocity R, its coordinates change in the 
viewer's reference according to 

where V, R are related to T and R via exponential coordinates [9]. Since Xn E 11, it must 
be aTxn = 1 and therefore 

so that the motion field for points Xh on the plane can be written as 

where 

We can rewrite an alternative expression for the optical flow as 

where A is a 2 x 6 matrix that depends upon the choice of the plane I1 and the motion of 
the viewer V, R: 

Now, given a number of flow vectors xi at a number of locations x;, one may solve via 
linear least-squares for the 8 parameters of A without imposing a n y  structure on them. 

Alternatively, one may use the above constraint for two other purposes: one for estimating 
a best plane-fit from correspondences, by decoupling the plane parameters a from the motion 
parameters, and another for estimating ego-motion when the visible structure lies on a plane, 
by decoupling motion from the plane parameters. This will be done in the next two sections. 

We end this section by defining the "warp operation" on a generic image point x (not 
image of a point on the reference plane) as 

Note that, if the point xn E II, then we have 

provided that we approximate the derivative with the first difference. In the presence of 
strong temporal aliasing, we can refine the warping iteratively, by applying it over and over 
on the residual image motions. 



5.4.1 Direct methods for quadratic warping from image brightness 

Note that the warping can also be performed directly from image intensities. In fact, from 
the image brightness constraint equation 

we get 
VxI(x,  t )x  + I t  = V,I(x, t)Au(x) + It = 0 (37) 

which is a constraint that can be solved in a least-squares sense for the parameters of the 
matrix A. 

5.5 Motion-independent plane fitting 

Consider the expression of the motion field (30), which we rewrite as 

Given the above constraint at a sufficient number of locations x ,  we can solve for motion 
as a function of the plane parameters a, and substitute back the result, ending up with a 
subspace constraint involving only the plane parameters a and measured image coordinates: 

CL(x, a)x = o a E IEt3 (40) 

where CL 2 I - CCt. The above is an implicit dynamical system with parameters a, and the 
Essential filter [13] provides a principled way for estimating the parameters from the above 
model. 

5.5.1 Direct methods for plane fitting 

The same fitting can be accomplished directly from image brightness derivatives. From the 
brightness constraint we have 

which can be solved again for the motion parameters and substituted back in order to get 
the implicit dynamic constraint 

which depends only upon the plane parameters and the image brightness derivatives and can 
be fed into an Essential filter in order to estimate the plane parameters a recursively. 



5.6 Motion from planar structure 

The expression of the motion field (30) can be reinterpreted in order to formulate a constraint 
only on the motion parameters and not involving the plane parameters. To this end, we write 
the optical flow as as 

where L'(x, V) A [A(x)VxT I B(x)]. We can now follow the same procedure as in the previous 
section, in order to derive a constraint only on the motion components and image velocities 

that can be fed into an essential filter in order to estimate the direction of translation V E S2. 
The same procedure can be performed directly from image brightness, from the constraint 

where G A V,I C" 
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